A FACILE SYNTHESIS OF α , β -UNSATURATED β -BROMO-N-ACYL- α -AMINO ACIDS

Chung-gi Shin, Katsumi Nanjo, and Juji Yoshimura*

Laboratory of Organic Chemistry, Kanagawa University, Kanagawa-ku, Yokohama 221

*Laboratory of Chemistry for Natural Products, Tokyo Institute of Technology,

Meguro-ku, Tokyo 152

(Received in Japan 12 December 1973; received in UK for publication 2 January 1974)

In previous papers, $^{1-3}$ we reported the synthesis of α , β -unsaturated N-acyl- α -amino acid ester (3) by the condensation of ethyl α -oxocarboxylate with amide or by the treatment of N-acetoxy-N-acyl- α -amino acid ester with Et₃N. Up to date, however, the available synthetic method of the title compounds $\underline{6}$ and $\underline{7}$ has never been reported except the preparation of β -halo-sec- and tert-enamines. $^{4-6}$ Owing to the synthetic utility of $\underline{6}$ and $\underline{7}$, a facile synthetic method was pursued here.

Attempts on addition of Br₂ to $\underline{3}$ (R¹=Et) in CHCl₃ and subsequent elimination of HBr was unsuccessful except the direct conversion of $\underline{3a}$ (R¹=t-Bu) into $\underline{7a}$ (X=CH₃; yield 59%. mp 150°C: X=OEt; yield 60%. mp 154-156°C: X=phthaloyl; yield 38%. mp 188°C). Furthermore, it was found that the treatment of ethyl α -hydroxyamino-propanoate ($\underline{1a}$) with bromoacetyl bromide in benzene in the absence of pyridine gave directly the expected ethyl N-bromoacetyl- α -amino- β -bromo- α -pentenoate ($\underline{6a}$; X=CH₂Br, mp 118-119°C), though the yield was 6.7%. It was deduced that the formation of $\underline{3}$ via the corresponding hydroxamic acid ester ($\underline{2}$)² was successively followed by addition of Br₂ formed oxidatively from HBr, and by elimination of HBr to

afford the compound 6.

On the other hand, the treatment of $\underline{\mathbf{z}}$ with N-bromosuccinimide in $\mathtt{CCl}_{\underline{\mathbf{L}}}$ gave unstable oily product; tert-butyl N-acetyl-N-bromo- α -alkenoate (48; ν_{max} 1740, 1720, 1680 cm⁻¹: 4b; ν_{max} 1740, 1725, 1680 cm⁻¹), in quantitative yields, which gradually rearranged at room temperature for two days to give 6 as crystals in good yields. Compound $\underline{6}$ was composed of E- and Z-isomers, which were separated

Scheme 2

chromatography on silica-gel column using benzene-ethyl acetate (5:1) as effluent (Table 1). All of the new compounds and their structures have been chracterized spectroscopically and gave satisfactory elementry analysis.

T	able 1.	<u>tert</u> -Butyl N-Acetyl- α -amino- β -bromo- α -alkenoate ($\underline{6}$)			
Compound		Mp Oca)	Yield (%)	IR Spectrum, cm ⁻¹ in KBr	NMR Spectrum, in CDCl ₃ , NH
6a	E	138-139	54	3340,1715,1680,1645	7.06
	z	101.5-102.5	36	3340,1715,1685,1640	7.94
6ъ	E	84-87	45	3270,1725,1670,1635	7.16
	z	syrup	18	3270,1730,1680	8.35

References and Note

- 1) C. Shin, M. Fujii, and J. Yoshimura, Tetrahedron Lett., 1971, 2499. C. Shin, K. Sato, A. Ohtsuka, K. Mikami, and J. Yoshimura, Bull. Chem. Soc. Japan, in press.
- C. Shin, K. Nanjo, E. Ando, M. Sakurai, and J. Yoshimura, Preprints for 2) the 27th Annual Meeting of the Chemical Society of Japan, Nagoya, October, 1972, Vol. 1, p. 527.
- 3) C. Shin, K. Nanjo, and J. Yoshimura, Chemistry Lett., 1973, 1039.
- S. J. Huang and M. V. Lessard, J. Org. Chem., 35, 1204 (1970).
- H. Ahlbrecht and M. T. Reiner, Tetrahedron Lett., 1971, 4901. 5)
- 6) L. Duhamel, P. Duhamel, and J-M. Poirier, Tetrahedron Lett., 1973, 4237.
- 7) This reaction performing in the presence of pyridine, the corresponding hydroxamic acid esters were obtained in good yield (reference 2).

Recrystallization from dibutyl ether gave colorless needles.